脱氮反应器的活性污泥法工艺:A2O法。A2O法即厌氧一缺氧一好氧活性污泥法。污水在流经厌氧、缺氧、好氧三个不同功能分区的过程中,在不同微生物菌群的作用下,使污水中的有机物、N、P得到去除。A2O 法是较简单的同步除磷脱氮工艺,总水力停留时间短,在厌氧、缺氧、好氧交替运行的条件下,可抑制丝状菌的繁殖,克服污泥膨胀,SVI一般小于100,有利于处理后的污水与污泥分离,厌氧和缺氧段在运行中只需轻缓搅拌,运行费用低。优点:该工艺为较简单的同步脱氮除磷,总的水力停留时间,总产占地面积少;在厌氧的好氧交替运行条件下,丝状菌得不到大量增殖,无污泥膨胀;污泥中含磷浓度高,具有很高的肥效;运行中勿需投药,只用轻缓搅拌,运行费低。脱氮反应器的使用需要注意维护和保养,需要定期清理净化剂和更换损坏的零部件。烟台BBDS脱氮反应器工作原理
高效脱氮反应器的脱氮原理:高效脱氮反应器的脱氮原理是以反硝化阶段难转化的特点为中心,在反应器内设置定制的多孔填料,通过接种高效生物脱氮菌,在其作用下完成NO2-和NO3-到N2的转化过程,氮气通过排气微孔道迅速排出,完成废水脱氮。高效脱氮反应器是经过特殊结构设计的撬装式反硝化设备。通过特殊定制的多孔填料,使得单位面积填料上附着了更多的反硝化菌,在反硝化菌的作用下促使硝酸盐氮快速转化为氮气释放到大气中,完成快速脱氮。长沙脱氮反应器设备脱氮反应器技术可以在生产和社会发展中实现生态优先,带来“绿色成长”的新机会和新空间。
脱氮反应器工艺(BAF)特点:1.采用气水平行上向流,使得气水进行极好均分,防止了气泡在滤料层中凝结核气堵现象,氧的利用率高,能耗低;2.与下向流过滤相反,上向流过滤维持在整个滤池高度上提供正压条件,可以更好的避免形成沟流或短流,从而避免通过形成沟流来影响过滤工艺而形成的气阱;3.上向流形成了对工艺有好处的半柱推条件,即使采用高过滤速度和负荷,仍能保证BAF工艺的持久稳定性和有效性;4.采用气水平行上向流,使空间过滤能被更好的运用,空气能将固体物质带入滤床深处,在滤池中能得到高负荷、均匀的固体物质,从而延长了反冲洗周期,减少清洗时间和清洗时用的气水量;5.滤料层对气泡的切割作用是使气泡在滤池中的停留时间延长,提高了氧的利用率;6.由于滤池极好的截污能力,使得BAF后面不需再设二次沉淀池。
脱氮反应器工艺优点:①相比传统工艺,ANAMMOX工艺可以节省60%的耗氧量,不需要加入外加有机碳源,产生的污泥量也很少,可有效减低运行成本。②与SHARON-ANAMMOX组合工艺相比,可节省37.5%的能耗,在较低温度(22~30摄氏度)仍可获得较好的脱氮效果,在两阶段悬浮式生物膜脱氮系统中,内浸式生物膜的加入克服了SHARON-ANAMMOX组合工艺中生物量流失的缺点,避免了硝化阶段的微生物对厌氧氨氧化阶段微生物的影响,使反应过程更加容易控制,增加了脱氮反应过程的稳定性。③工艺运行过程中可以通过化学计量方法合理地控制氧的供给则可有效地控制在亚硝化阶段。利用短程硝化反硝化原理,可实现低C/N的水产养殖废水脱氮。
生物脱氮反应器的过程:生物脱氮过程包括三个反应:氨化反应、硝化反应、反硝化反应。还包括生物同化作用。简述如下:1.同化作用:污水中的一部分氮被微生物吸收作为生物体的组成成分。2.氨化反应:氨化反应是指污水中的蛋白质和氨基酸在脱氨基酶作用下转化为氨氮的过程。污水中的有机氮主要以蛋白质和氨基酸的形式存在。在蛋白质水解酶的催化作用下,蛋白质水解氨基酸。氨基酸在脱氨基酶的作用下发生脱氨基作用,形成无机小分子氨氮。人和高等动物所排泄的尿中含有尿素,尿素在尿素酶的作用下迅速水解生成碳酸铵。因此生活污水中的氨氮主要来源于尿素的分解。3.硝化反应。4.反硝化反应。保持脱氮反应器的良好状态是其正常运行和长期使用的前提。杭州厌氧氨氧化脱氮反应器公司排名
氨化反应:氨化反应是指污水中的蛋白质和氨基酸在脱氨基酶作用下转化为氨氮的过程。烟台BBDS脱氮反应器工作原理
生物脱氮技术(BNR)除氮工艺不仅能够实现较高的除氮率,而且除氮过程中污泥产生量较少,尤其适用于高含氮量的工业污水以及C/N较低的污水。在启动阶段,从微生物角度来看,在氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)繁殖过程中,需要抑制或减少NOB的数量从而抑制NO2−到NO3−的转化过程。通过控制pH、温度、溶解氧含量、泥龄(SRT)、游离氨、游离亚硝酸、添加化学抑制剂等运行条件都被证明可以影响AOB-NOB的生长反应动力,这些影响因素的结合运用能够相对容易地建立稳定的短程硝化。烟台BBDS脱氮反应器工作原理